Contextualized Embeddings in Named-Entity Recognition: An Empirical Study on Generalization

Bruno Taillé^{1,2}, Vincent Guigue² and Patrick Gallinari² ¹ **BNP Paribas** ² **Sorbonne Université**, CNRS, LIP6 bruno.taille@lip6.fr

Overview

Language Model pretraining enables to compute contextual word representations intuitively useful for generalization, especially in Named-Entity Recognition where it is crucial to detect mentions never seen during training.

However, English NER benchmarks overestimate the importance of lexical over contextual features because of an unrealistic lexical overlap between train and test mentions.

Named-Entity Recognition

We perform an empirical analysis of the generalization capabilities of state-of-the-art contextualzed word embeddings by separating mentions by novelty and with out-ofdomain evaluation from CoNLL03 to OntoNotes and WNUT.

In such setting, we show that Language Model contextualization is particularly beneficial for unseen mentions detection, especially out-of-domain.

Lexical Overlap

Lexical overlap of test mentions with training mentions in-domain and out-of-domain

Explored Word Representations

Lovical ·	GloVe (Pennington 2)	01/1)							
	Giove (Pennington 2014)								
Morphological :	charBiLSTM (Lample 2016)								
	ELMo[0] = charCNN 1	from ELMo							
Contextual :	ELMo (Peters 2018)	 charCNN word representation Word-level BiLSTM LM Fusion by weighted sum of layers 							
	Flair (Akbik 2018)	 Char-level BiLSTM LM Concatenation of 1st and last character states 							

Results

Table 2. In-domain micro-F1 scores of the BiLSTM-CRF architecture on CoNLL03 and OntoNotes^{*}. Results are averaged over 5 runs. Contextual embeddings are over the dashed line.

		CoNLL03			OntoNotes*				WNUT*			
Embedding	Dim	EM	PM	New	All	EM	PM	New	All	 PM	New	All
BERT	4096	95.7	88.8	82.2	90.5	96.9	88.6	81.1	93.5	77.0	53.9	57.0
ELMo	1024	95.9	89.2	85.8	91.8	97.1	88.0	79.9	93.4	67.7	49.5	52.1
Flair	4096	95.4	88.1	83.5	90.6	96.7	85.8	75.0	92.1	64.9	48.2	50.4
ELMo[0]	1024	95.8	87.2	83.5	90.7	 96.9	85.9	75.5	92.4	 72.8	45.4	49.1
GloVe + char	350	95.3	85.5	83.1	89.9	96.3	83.3	69.9	91.0	63.2	33.4	38.0
GloVe	300	95.1	85.3	81.1	89.3	96.2	82.9	63.8	90.4	59.1	28.1	32.9

Table 3. Micro-F1 scores of models trained on CoNLL03 and tested in-domain and out-ofdomain on OntoNotes^{*} and WNUT^{*}. Results are averaged over 5 runs.

OntoNotes*

WNUT*

CoNLL03

Lexical overlap bias	F1 _{EXACT} > F1 _{PARTIAL} > F1 _{NEW} with a wider gap out-of-domain
ELMo vs BERT vs Flair	ELMo seems more stable Flair's char-level LM is less robust to domain adaptation
ELMo[0] vs GloVe + char	ELMo[0] already is an improvement over GloVe + charBiLSTM
Two contextualizations	C _{NER} supervised with NER = Map-CRF to BiLSTM-CRF C _{LM} from unsupervised LM = ELMo[0] to ELMo
Both improve generalizati C _{LM} is more beneficial than C _{NER} and C _{LM} are compleme	on to unseen mentions in and out-of-domain A C _{NER} out-of-domain, especially on genres far from source entary except in the difficult domain adaptation to WNUT*

Table 4. Per-genre micro-F1 scores of the BiLSTM-CRF model trained on CoNLL03 and tested

 on OntoNotes* (broadcast conversation, broadcast news, news wire, magazine, telephone conversation and web text). C_{LM} mostly benefits genres furthest from the news source domain.

	Emb	EM	PM	New	All	EM	PM	New	All	EM	PM	New	All
RF	BERT	95.7	88.8	82.2	90.5	95.1	82.9	73.5	85.0	57.4	56.3	32.4	37.6
	ELMo	95.9	89.2	85.8	91.8	94.3	79.2	72.4	83.4	55.8	52.7	36.5	41.0
М-С	Flair	95.4	88.1	83.5	90.6	94.0	76.1	62.1	79.0	56.2	49.4	29.1	34.9
STI	ELMo[0]	95.8	87.2	83.5	90.7	93.6	76.8	66.1	80.5	52.3	50.8	32.6	37.6
BiL	G + char	95.3	85.5	83.1	89.9	93.9	73.9	60.4	77.9	55.9	46.8	19.6	27.2
	GloVe	95.1	85.3	81.1	89.3	93.7	73.0	57.4	76.9	53.9	46.3	13.3	27.1
	BERT	93.2	85.8	73.7	86.2	93.5	77.8	67.8	80.9	57.4	53.5	33.9	38.4
Γ.	ELMo	93.7	87.2	80.1	88.7	93.6	79.1	69.5	82.2	61.1	53.0	37.5	42.4
ĊR	Flair	94.3	85.1	78.6	88.1	93.2	74.0	59.6	77.5	52.5	50.6	28.8	33.7
lap-	ELMo[0]	92.2	80.5	68.6	83.4	91.6	69.6	56.8	75.0	51.9	42.6	32.4	35.8
Σ	G + char	93.1	80.7	69.8	84.4	91.8	69.3	55.6	74.8	50.6	42.5	20.6	28.7
	GloVe	92.2	77.0	61.7	81.5	89.6	62.8	38.5	68.1	46.8	41.3	3.2	18.9

	bc	DII	ПW	IIIZ	lC	WD	All
BERT	87.2	88.4	84.7	82.4	84.5	79.5	85.0
ELMo	85.0	88.6	82.9	78.1	84.0	79.9	83.4
Flair	78.0	86.5	80.4	71.1	73.5	72.1	79.0
ELMo[0]	82.6	88.0	79.6	73.4	79.2	75.1	80.5
GloVe + char	80.4	86.3	77.0	70.7	79.7	69.2	77.9

References

Akbik, A., Blythe, D., & Vollgraf, R. Contextual string embeddings for sequence labeling. COLING 2018 Augenstein, I., Derczynski, L., & Bontcheva, K. Generalisation in named entity recognition: A quantitative analysis. Computer Speech & Language 2017 **Devlin**, J., Chang, M. W., Lee, K., & Toutanova, K. BERT: Pre-training of deep bidirectional transformers for language understanding. NAACL 2019 Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K., & Dyer, C. Neural architectures for named entity recognition. NAACL 2016 Moosavi, N. S., & Strube, M. Lexical features in coreference resolution: To be used with caution. ACL 2017 Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., & Zettlemoyer, L. Deep contextualized word representations. NAACL 2018